joint swelling. The steroid-sparing effect in polymyositis and also polyarteritis and disseminated lupus erythematosus is self-evident. Acute gout responded well. The side-effects have been localized in the nervous system, headache being the important feature in our series and this symptom as well as vertigo accompanying it, was aborted by the administration of small doses of methysergide (1-2 mg. b.d.). Gastro-intestinal complications were avoided by either the suppository administration or the routine addition of Koldanyl gel in the oral administration of the drug. The patients were also encouraged to take their tablet during mealtime. For patients with known ulcers or dyspeptic histories, suppositories were used with good response and no gastro-intestinal tract irritation. Side-effects on vital organs, namely liver, kidney, bone marrow and heart, were not observed.

MUSHROOM POISONING CAUSED BY AMANITA PANTHERINA
REPORT OF 4 CASES

C. K. Bosman, M.B., B.Ch.; L. Berman, M.B., M.R.C.P.; M. Isaacson, M.B., B.Ch.; B. Wolfowitz, M.B., B.Ch.; and J. Parkes, M.B., B.Ch.; Department of Medicine, University of the Witwatersrand and Johannesburg Hospital; and the South African Institute for Medical Research

Although mushroom poisoning is well recognized in South Africa, it is not generally appreciated that the toxic effects are extremely variable. This is particularly so with Amanita pantherina, which is one of the most common poisonous mushrooms in the Transvaal. There appear to be several reasons for this variable toxicity. Thus, while it is apparent that some individuals tolerate the effect of the toxins better than others, there is good evidence that this is not the only factor and that both the soil in which the particular mushroom grows, and the season during which it is picked, influence the toxicity.1,2

The present paper records our recent experience in handling 4 patients who had eaten Amanita pantherina. Our findings underline the individual variations in clinical presentation and also highlight some of the therapeutic problems posed by such patients.

CASE HISTORIES

A family of 4 German immigrants, who had been resident in this country for 10 years, picked wild mushrooms found growing in a plantation on the West Rand and ate approximately 2 tablespoonfuls each. About 1½ hours later they arrived at the casualty department of this hospital.

Case 1
J.L., male, aged 62 years. Half-an-hour after the meal he noticed a light-headed 'dizzy' sensation, which he likened to that experienced by a man who had drunk a case of beer. This was followed by tiredness and clouding of vision. However, he retained sufficient presence of mind to collect his family and drive his car to the hospital. On arrival, he became at first excitable and then stuporose. Vomiting started while he was undergoing lavage, and on admission to the ward he was in a semi-comatose state.

Examination. He was a small male, of good physical condition, with no evidence of underlying disease. There was no circulatory collapse or respiratory distress. The blood pressure was 130/90 mm.Hg, and the pulse rate was 120/min. and otherwise unremarkable. Miosis and a moderate degree of salivation was present. The rest of the initial examination was negative. However, within the first hour of admission a noteworthy feature developed. This was a generalized twitching of muscle groups, often spontaneous, but also stimulated by insertion of a needle into a vein, by light touch, or by movement of the bed-clothes. His level of consciousness continued to deteriorate and periods of apnoea were observed. Apart from supportive measures, he was given 1/50 gr. of atropine and a diuresis was induced with 400 ml. of 40% dextrose water. He gradually improved and after 48 hours, during which he was agitated and experiencing visual hallucinations, he became lucid.

Case 2
G.L., female, aged 51 years, the wife of patient 1. She noticed a sensation of 'dizziness' and tiredness immediately after eating the mushrooms, but as the rest of the family seemed unaffected at that time, she attributed her symptoms to the warmth of the evening. However, they gradually became more severe and by the time she reached hospital she was also suffering from nausea. She then induced emesis by pharyngeal irritation. No other noteworthy symptoms were present at this time.

Examination. A middle-aged woman with only very mild distress; there was no evidence of underlying disease. The blood pressure was 100/80 mm.Hg, and the pulse rate was 84/min. and regular. Moderate miosis was present, but no significant salivation, confusion, or twitching was noted. In the ensuing days she complained of non-specific abdominal pain, but there was no diarrhoea or further gastro-intestinal disturbance. Recovery was virtually complete 18 hours after ingesting the toxins.

Case 3
R.L., the 16-year-old son of patients 1 and 2, complained of 'light-headedess' ½ hour after eating the mushrooms. Thereafter he became 'dizzy', felt tired and his vision became clouded. Nausea and vomiting were induced during gastric lavage and on admission to the ward he was in a state of stupor.

Examination. A well-built youth with no respiratory distress or circulatory collapse. The blood pressure was 110/70 mm.Hg, and the pulse rate was 84/min. and regular. Pupil size was not remarkable, but moderate salivation was present. The reflexes were brisk and characteristic twitching similar to that seen in patient 1 was present. Approximately 10 hours after ingestion of the toxins he was sufficiently lucid mentally to answer questions at a ward staff meeting.

Case 4
W.T., a 23-year-old male, a close friend of the family, was sitting in a cinema approximately 1 hour after the meal when he noticed a sensation of 'light-headedness' and found he could not keep his hands still owing to restlessness and tremor. This was so severe that he was unable to light a cigarette. Double vision developed and he left the cinema shortly afterwards. He had to be restrained by his companions as he

Grateful acknowledgement is made to Dr. K. C. Mezey, Medical Research Division, Merck Sharp & Dohme International, for generous supplies of Indomethacin capsules and suppositories.

REFERENCES
7. Solomon, L.: Personal communication.
staggered and ran down the street, grasping lamp-posts in an inebriated fashion. On the way to hospital he noticed twitching of his limbs and extreme tiredness, and by the time he arrived in the casualty department he was semi-comatose. Gastric lavage induced nausea and vomiting.

Examination. A well-built young male in a semi-comatose state. He was not shocked, but some respiratory distress was present. This distress was thought to be due to excessive salivation, to intermittent apnoea and to the aspiration of some stomach contents during vomiting. The blood pressure was 140/80 mm.Hg, and the pulse rate was 70/min. Hyperreflexia and the same twitching of muscle groups as in patients 1 and 3 was present. In this patient, however, minimal stimulation resulted in a major convulsion. The latter feature was progressive. Pupil size was variable in a manner reminiscent of hippus. Large doses of analeptics were required for control of the progressively more severe convulsions. In addition, severe respiratory embarrassment was present; a tracheostomy was therefore performed and the patient breathed artificially for the next 24 hours. The semi-comatose state persisted for approximately 18 hours after ingesting the toxins.

Subsequent Progress of the 4 Patients

Two weeks after the poisoning, all the victims were again ambulatory. A small pneumothorax which had occurred in patient 4 at the time of tracheostomy had resolved, and his neck wound was virtually healed. The only late symptom was an inability to grasp and remember minor details of everyday life. This mild mental deficit was present in all the patients for 6 weeks after the poisoning, but at the time of writing all are fully recovered.

Identification of the Mushrooms

Relatives retrieved the remaining mushrooms which had been picked and Dr. H. J. Swart, of the Department of Botany of the University of the Witwatersrand, identified these as Amanita pantherina. He also lent us photographs (Figs. 1 and 2) of some of the more important Amanita species found in Southern Africa. By comparing these with the illustrations in the cookery book used by the patients, we were able to ascertain that they had confused the inedible Amanita pantherina with the edible A. rubescens. Mistaken identification of these two mushrooms is well documented.ö

After discharge from hospital the patients revisited the site of their mushroom gathering. Since by this time the season had ended they found only some dried specimens of Amanita pantherina (Fig. 3). Mr. H. Kundig, of the Department of Pharmacology, extracted any remaining active toxic principles with alcohol, and injected the extract into test rabbits. The only effect noted, however, was a slow contraction and dilatation of the pupils in a similar manner to that described in patient 4.

DISCUSSION

The arrival of many European immigrants in South Africa in recent years may well increase the incidence of mushroom poisoning, since it is common practice to pick wild mushrooms on the Continent. On general grounds of public health and preventive medicine, it is therefore desirable that the public be made aware of the dangers of mushroom poisoning and of the difficulties in identifying different wild species. In this context it is important to stress that none of the time-honoured methods for identifying non-edible varieties such as 'peeling of the cap', 'blackening of a silver spoon', 'growing near rusty metal objects', and other such 'tests', are reliable.ö

The features of the clinical presentation of patients suffering from Amanita pantherina poisoning were well illustrated by the 4 cases reported in this paper. In parti-
cular, the early onset of symptoms, the predominance of initial neurological manifestations, later occurrence of gastro-intestinal disturbance, and early recovery, serve to distinguish this poisoning from other types.\textsuperscript{2,4,5} Thus, although the time of onset of \textit{A. muscaria} poisoning is similar, gastro-intestinal disturbance tends to occur earlier in this form of mycetismus. Similarly, pure muscarine poisoning (e.g. \textit{Inocybe patouillardii})\textsuperscript{6,7} has a somewhat later onset. Poisoning due to \textit{A. phalloides} (and other phalloidin-containing mushrooms, e.g. \textit{A. capensis} and \textit{A. verna}) is associated with a late onset of symptoms (6–16 hours) and often culminates in anuria, renal and cardiac failure and death after approximately 72 hours in 50\% of cases.\textsuperscript{5,8,9,11-13}

Table I was compiled in an attempt to correlate the presentation of \textit{Amanita pantherina} poisoning with the toxin responsible for each feature. At least two groups of signs and symptoms occur, and possibly a third group, although the latter may be due to a combination of groups 1 and 2. Group 1 consists of salivation, bradycardia, miosis, sweating, dyspnoea and gastro-intestinal stimulation.

<table>
<thead>
<tr>
<th>Table 1. Tentative classification of the \textit{A. pantherina} toxins</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Toxin</strong></td>
</tr>
<tr>
<td>---------------------------------------------------</td>
</tr>
<tr>
<td>1. Muscarine and choline</td>
</tr>
<tr>
<td>2. Pilzatropine, mycoatropine, or L-hyoscyamine</td>
</tr>
<tr>
<td>3. Bufotenine or pilzoxin</td>
</tr>
</tbody>
</table>

The conflicting effects of the two major toxins of \textit{Amanita pantherina} pose difficulty in therapy, particularly in regard to the administration of atropine.\textsuperscript{6,8,9,11,12} It would appear that its use is only indicated where the clinical presentation indicates that the ‘pilzatropine’ effect has failed to cancel the muscarinic effect.

The variability of response to the toxic effects of \textit{Amanita pantherina} in individual patients has evoked much discussion in the literature.\textsuperscript{5,6,9,13-15} It is usually claimed that different batches of mushrooms contain differing amounts of the various toxins. Thus specimens collected by Lewis\textsuperscript{17} at the Cape had a high content of L-hyoscyamine, whereas those harvested in the winter and spring in the USA by Brady and Tyler\textsuperscript{14} contained no such alkaloid. These authors also mention the work of Wieland and co-workers,\textsuperscript{18} who claimed to have isolated bufotenine from their specimens of \textit{Amanita pantherina}. The former authors were, however, sceptical as to its significance in mycetismus. It is therefore apparent that there is either tremendous variation in the proportions of the toxins in each batch of \textit{A. pantherina}, or that the tests used for analysis are not uniform.

No estimates of the incidence of \textit{A. pantherina} poisoning in the Republic have been published. However, 1,000 of 5,000 cases of mycetismus reported in Germany\textsuperscript{9} in 1946 were due to this species. The mortality rate in this country is also not certain, although Silberbauer and Mirvish\textsuperscript{10} reported 7 deaths in 7 cases in 1927. Krause\textsuperscript{11} also reported a high mortality rate (7 out of 8 cases), but the generally accepted figure is 10–20\%.

The treatment of the present cases of \textit{A. pantherina} poisoning is set out in Table II. Additional measures which have been advocated include the use of charcoal for adsorption of the toxin, high colonic lavage and purgation, exchange blood transfusion, haemodialysis, the oral administration of ground-up rabbit stomach and brain, the administration of antiphalloidin serum (Pasteur Institute, Paris) and therapy for renal, hepatic and cardiac failure. The last form of treatment is usually only necessary in cases caused by the much more lethal \textit{A. phalloides}, \textit{A. verna} and \textit{A. capensis}, and was fully reviewed by Elliott and co-workers\textsuperscript{20} in 1961, and previously by others.\textsuperscript{5,9,26}

<table>
<thead>
<tr>
<th>Table II. Treatment of 4 cases of \textit{A. pantherina} poisoning</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Treatment</strong></td>
</tr>
<tr>
<td>---------------------------------------------------</td>
</tr>
<tr>
<td>Gastric lavage or emesis</td>
</tr>
<tr>
<td>Atropine</td>
</tr>
<tr>
<td>400 ml. 40% dextrose water</td>
</tr>
<tr>
<td>Sedation and analgesia</td>
</tr>
<tr>
<td>Supportive measures</td>
</tr>
<tr>
<td>Tracheostomy and respirator</td>
</tr>
<tr>
<td>Antibiotic</td>
</tr>
</tbody>
</table>

30 October 1965 S.A. MEDICAL JOURNAL 985

REFERENCES

The course and prognosis of patients with heart disease are frequently altered by the onset of an arrhythmia which may cause a marked deterioration in the haemodynamic state or even congestive failure. The most frequently encountered arrhythmias are of the rapid ectopic type, and when the ventricular rate reaches 160/min. or more, cardiac output falls and coronary blood flow is compromised. In patients with atrial fibrillation the ventricular output is diminished owing to the absence of the atrial systolic contribution to ventricular filling.

Until recently, attempts at restoring sinus rhythm in patients with atrial fibrillation were confined to the administration of drugs, the most effective of which is quinidine. However, the use of quinidine carries a well-recognized risk, and it has been estimated that sudden death occurs in 1.8% of patients receiving therapeutic doses of this drug. If congestive cardiac failure is present, quinidine is associated with an even greater danger, sudden death occurring in 4%. Selzer and Wray consider that paroxysmal ventricular fibrillation ensues in 3-5% of all patients on quinidine treatment. The ventricular fibrillation may be repetitive and it may occur after the patient has previously taken the drug in moderate doses without apparent ill-effect. The treatment of quinidine-induced ventricular fibrillation is often difficult and may be unsuccessful.

In 1962 Lown et al. introduced an electrical method for the conversion of ectopic atrial arrhythmias to sinus rhythm. An under-damped direct-current discharge of 2.5 milliseconds duration is used. The current can be pre-set to be delivered at any part of the cardiac cycle, and the so-called 'vulnerable period' near the peak of the T wave on the electrocardiogram can therefore be avoided. The danger of inducing ventricular fibrillation is then negligible. The technique, now known as 'cardioversion', has been used extensively in the elective treatment of ectopic atrial arrhythmias.